Физические свойства металлов — Гипермаркет знаний. Физические свойства металлов Физические свойства металлов IIА группы

По теме:

» Общая характеристика металлов. Особенности строения металлов. Физические свойства металлов. Сплавы».

Учитель химии

МОУ«Средняя общеобразовательная школа № 5»

г. Ивантеевки

Цель урока: создать условия для обобщения и углубления знаний учащихся о металлах как простых веществах, физических свойствах металлов, использование человеком.

Тип урока: Урок обобщения и систематизация ЗУН.

Задачи урока:

    Образовательная: повторить с учащимися положение металлов в ПСХЭ, особенности строения их атомов и кристаллов, повторить и обобщить сведения о металлической связи и кристаллической решетки, обобщить и расширить сведения учащихся о физических свойствах металлов и их классификации, дать понятие о сплавах. Воспитательная: воспитывать коммуникативные качества, умение высказывать собственное мнение, сотрудничество в группе. Развивающая: развивать познавательную активность учащихся, способствовать на уроке развитию умений: наблюдать, анализировать, сравнивать, делать выводы, а также формированию навыков работы с различными источниками: таблицами, схемами, коллекциями , опорными конспектами.

На уроке использовалось следующее оборудование:

Мультимедийный проектор Коллекция «Металлы и сплавы» Модели кристаллических решеток хлорида натрия, алмаза, железа, меди Таблица металлической кристаллической решетки ПСХЭ

Ход урока.

Организационный момент .

Учитель сообщает цель урока, отмечая практическую важность металлов в жизни человека.

2.Проверка домашнего задания .

Проверка первой части дом. задания (2 ученика у доски)

Изобразить строения атомов: 1) Na, Mg, Al; 2) Li, Na, K

3.Фронтальный опрос.

Где в Периодической системе находятся элементы-металлы? В чем состоит особенность строения элементов-металлов?

Учитель: Почему Sn, Pb, Bi, Po, атомы которых содержат 4,5,6 электронов, являются металлами?

Ответ: Сравнительно большой радиус (вывод, который и разрешил проблему; в подтверждении этого учитель приводит пример-бор, атомы которого имеют 3 электрона на внешнем уровне, но маленький радиус атома, является типичным неметаллом).

Слушаем ответы учеников, которые выполняли домашнее задание, у доски.

Затем продолжаем беседу.

Как в периоде с возрастанием порядкового номера изменяются металлические свойства? и Почему? Как в группах главных подгруппах с возрастанием порядкового номера изменяются металлические свойства? и Почему?

Запись в тетрадь:

1) Металлы на последнем уровне имеют небольшое число электронов(1-3)

2) Так как металлы расположены в начале периода, то у них большой атомный радиус.

Учитель: Следует отметить, что деление элементов на металлы и неметаллы условное. Например, аллотропные модификации олова:a(Sn) или серое олово-неметалл, а b(Sn) или белое олово-металл (при t<+13,20С белое олово рассыпается в серый порошок),). Ребята вспоминают название этого явления-»оловянная чума».

Металл германий обладает многими неметаллическими свойствами; хром, алюминий и цинк-типичные металлы, но образуют соединения соединения (KAlO2, K2ZnO2, K2Cr2O7), в которых проявляют неметаллические свойства. Йод и графит-типичные неметаллы, но имеют свойства, присущие металлам (металлический блеск).

4.Особенности кристаллической металлической решетки и металлической связи. Физические свойства металлов.

Таблица «Металлические решетки»

Учитель: Ребята, давайте вспомним природу металлической связи и особенности металлической кристаллической решетки.

По таблице ребята вспоминают, что в узлах решетки находятся положительные ионы и атомы металлов, а по всему объему кристалла металла в постоянном движении обобществленные электроны (электронный «газ»).

Учитель напоминает ученикам, что положительные ионы и атомы постоянно переходят друг в друга, благодаря свободному перемещению электронов. При присоедини электрона к иону, последний превращается в атом, а атом в свою очередь в ион. Эти процессы протекают непрерывно, согласно схемы: Ме0- nē«Men+

Затем делается вывод:

Металлическая связь (МС)-это связь, которая возникает в кристаллах металлов (сплавов) в результате электростатического взаимодействия положительно заряженных ионов металла и отрицательно заряженных электронов.

Учитель задаёт вопрос: Какие виды химической связи известны? Ученики отвечают (ионная, ковалентная). Чтобы найти черты сходства и отличия металлической связи с этими видами связи проверяется вторая часть домашнего задания.

Проверка второй части домашнего задания (3 ученика у доски):

Записать схему образования химической связи для веществ с формулами:

1) NaCl 2) HCl 3) Cl2

Класс в это время отвечает на вопросы:

· Какие виды химической связи вам известны?

· Какая связь называется ионной?

· Какая связь называется ковалентной?

· Какая связь называется ковалентной полярной? Неполярной?

Затем ведется беседа, в результате которой ученики сравнивают, анализируют и обобщают знания о строении. Приходят к выводу:

Сходство : а) с ионной связью МС сходна наличием ионов;

б) с ковалентной связью МС имеет сходство, поскольку в ее основе

лежит обобщение электронов.

Различие: а) в металлах положительно заряженные ионы удерживаются свободно перемещающимися электронами, а в веществах с ионной связью отрицательными ионами.

б) электроны, которые осуществляют ковалентную с вязь, находятся вблизи соединенных атомов и прочно с ними связаны, а электроны, осуществляющие МС, свободно перемещаются по всему кристаллу и принадлежат всем его атомам.

Учитель обязательно «подчеркивает», что МС существует только в металлах, находящихся в жидком и твердом состоянии; но не в молекулах, которые удерживаются ковалентными связями - в парах (газообразное состояние) металлы существуют в виде молекул с этим типом связи: Li2, Na2.

Обсуждение вопроса о свойствах металлов, работа с коллекцией «Металлы и сплавы».

В ходе обсуждения ученики на вопрос учителя: «Какие общие свойства присущи металлам и почему?» Отвечают: 1)Блеск, электропроводимость , теплопроводимость,

пластичность.

2)Общие физические свойства металлов определяются металлической связью и металлической кристаллической решеткой.

5. Объяснение нового материала.

5.1. Физические свойства металлов.

Учитель подчеркивает, что физические свойства металлов определяются их строением.


1)Твердость. Все металлы, кроме ртути, твердые. Но это свойство различно у каждого металла.

Рис.1 Относительная твердость некоторых металлов

Самые мягкие металлы-натрий, калий, индий, их можно резать ножом; самый твердый металл-хром, царапает стекло.

2.Плотность . Все металлы делятся на легкие (с плотностью до 5г/см3) и тяжелые (с плотностью больше 5г/см3).

Легкие: Li, Na, K, Mg, Al Тяжелые: Zn, Cu, Sn, Ag, Au

Плотность самого легкого металла лития равна 0,53 г/см3, т. е. данный металл почти в 2 раза легче воды. Самый тяжёлый металл-это осмий, его плотность равна 22,6г/см3.

Рис.2 Плотность некоторых веществ

3. Плавкость.

Металлы делятся на легкоплавкие и тугоплавкие.

Рис. 3 Температура плавления некоторых веществ

4. Электропроводность.

Металлы обладают электрической проводимостью благодаря наличию свободных электронов или электронного «газа». Лучшие проводники-серебро, медь, золото, алюминий, железо. Худшие проводники-ртуть, свинец, вольфрам.

Хаотически движущиеся в металле электроны под воздействием приложенного электрического напряжения приобретают направленное движение, в результате чего возникает электрический ток.

При повышении температуры металла возрастают амплитуды колебаний атомов и ионов, которые находятся в узлах кристаллической решетки. Это затрудняет движение электронов, электрическая проводимость падает.

При пониженных температурах колебательное движение уменьшается, поэтому электрическая проводимость резко возрастает. Графит (неметалл) при низких температурах электрический ток не проводит из-за отсутствия электронов. А при повышении температуры ковалентные связи разрушаются, и электрическая проводимость начинает возрастать.

5.Теплопроводность.

Теплопроводность металлов, как правило, соответствует электропроводности. Она обусловлена большой подвижностью свободных электронов, которые, сталкиваясь с колеблющими ионами и атомами, обмениваются с ними энергией. Поэтому происходит быстрое выравнивание температуры по всему куску металла. Лучшая проводимость у серебра, меди, худшая - у висмута, ртути.

6. Пластичность.

Металлы обладают пластичностью, ковкостью и прочностью. Благодаря свободному перемещению электронов по всему кристаллу разрыв связей не происходит, т. к. отдельные слои в кристалле могут смещаться относительно друг друга. Это придает металлам пластичность -способность изменять свою форму без разрыва химических связей. (Опыт: две стеклянные пластинки скользят легко относительно друг друга, но с трудом отрываются. Прослойка воды-электронный газ).

Если произвести подобное воздействие на кристалл с ковалентной связью, произойдет разрыв химических связей т кристалл разрушится, поэтому неметаллы хрупкие.

Металлы, обладающиеся высокой пластичностью-золото, серебро, медь, олово, железо, алюминий.

Рис.4. Смещение слоев в кристаллических решетках при механическом воздействии:

а) в случае металлической связи; б) в случае ковалентной связи

7. Металлический блеск.

Для всех металлов характерен металлический блеск: серый цвет или непрозразрачность. Свободные электроны, заполняющие межатомное пространство в решетке, отражают световые лучи, поэтому металлы имеют металлический блеск (серебристо-белый и серый). Только золото и медь в большей степени поглощают короткие волны (близкие к фиолетовому цвету) и отражают длинные волны светового спектра, поэтому имеют желтый и оранжевый цвет.

Самые блестящие металлы-ртуть, серебро. В порошке все металлы, кроме алюминия и магния, теряют блеск и имеют черный или темно-серый цвет.

5.2 Сплавы.

5.2.1. Учитель: Почему химически чистые металлы редко используются в быту и промышленности? Например, из меди не делают бытовые изделия (как из алюминия). Легкий и прочный кальций не используют в самолетостроении? Даже золотые украшения, помимо золота содержат медь, серебро.

Ученики высказывают свои предложения, в ходе которых делается вывод: В технике используют преимущественно сплавы, а не чистые металлы, потому что металлы в отдельности не обладают всеми свойствами, которые необходимы для практического применения.

Запись в тетрадь:

Сплавы металлов -вещества с металлическими свойствами, состоящие из двух или нескольких компонентов, один из которых обязательно-металл.

В сплавах, также как и в металлах, химическая связь-металлическая. Поэтому физические свойства сплавов-электропроводность. теплопроводность, пластичность, металлический блеск (отвечают ученики).

При получении сплава исходные вещества расплавляют и перемешивают. При охлаждении происходит кристаллизация с образованием сплава. Кристаллизация - это переход вещества из жидкого состояния в твердое.

Представители сплавов: работа с коллекцией.

Чугун -сплав на основе железа, содержащий от 2 до 4,5 % углерода, а также марганец, кремний, фосфор и серу. Чугун значительно тверже железа, очень хрупкий, не куется, а при ударе разбивается. Этот сплав применяется для изготовления массивных деталей (так называемый литейный чугун ) и в качестве сырья для получения сталей (так называемый передельный чугун).

Сталь - сплав на основе железа, содержащий менее 2 % углерода. Стали по составу делят на два основных вида: углеродистая и легированная.

5.2.1. Сообщения учащихся о сплавах, используемых в современной технике, при этом не касаясь тех, о которых пойдет речь дальше, в связи с изучение конкретных металлов.

6. Заключение урока.

Учитель подводит итоги урока. Благодарит учеников. Выставляет отметки.

7. Домашнее задание.

§5, упр.1-3, §7, упр.1,2,4 (устно), повт. по конспектам 8 кл. (взаимодействие кислот с металлами). Ответьте на вопрос: в каких известных вам реакциях участвуют металлы?


1. Как расположены металлы в периодической таблице Д. И. Менделеева? Чем отличается строение атомов металлов от строения атомов неметаллов?
Металлы преимущественно располагаются в левой и нижней части периодической таблицы, т.е. в основном в I-III группах. И на внешнем энергетическом уровне у металлов обычно находится от одного до трех электронов (хотя возможны исключения: у сурьмы и висмута 5 электронов, у полония 6).

2. Чем по строению и свойствам кристаллические решетки металлов отличаются от ионных и атомных кристаллических решеток?
В узлах металлической кристаллической решетки находятся положительно заряженные ионы и атомы, между которыми передвигаются электроны, а в молекулярной и атомной кристаллической решетке в узлах расположены молекулы и атомы соответственно.

3. Каковы общие физические свойства металлов? Объясните эти свойства, основываясь на представлениях о металлической связи.

4. Почему некоторые металлы пластичные (например, медь), а другие – хрупкие (например, сурьма)?
У сурьмы 5 электронов на внешнем энергетическом уровне, у меди 1. С увеличением числа электронов, обеспечивается прочность отдельных слоев ионов, препятствующих их свободному скольжению, уменьшая пластичность.

5. При «растворении» в соляной кислоте 12,9 г сплава, состоящего из меди и цинка, получили 2,24 л водорода (н.у.). Вычислите массовые доли (в процентах) цинка и меди в этом сплаве.

6. Медно-алюминиевый сплав обработали 60 г соляной кислоты (массовая доля HCl – 10%). Вычислите массу и объем выделившегося газа (н.у.).

ТЕСТОВЫЕ ЗАДАНИЯ

1. Наиболее ярко металлические свойства проявляет простое вещество, атомы которого имеют строение электронной оболочки
1) 2е, 1е

2. Наиболее ярко металлические свойства проявляет простое вещество, атомы которого имеют строение электронной оболочки
4) 2е, 8е, 18е, 8е, 2е

3. Хорошо проводит электрический ток твердое вещество, имеющее кристаллическую решетку
3) металлическу

Цель: Раскрыть причину особых физических свойств металлов.
Задачи:
1. Рассмотреть физические свойства металлов;
2. Развивать умение различать физические свойства металлов; определять свойства;
3. Воспитывать коллективизм, внимание, аккуратность.
Оборудование: ПСХЭ, наглядный материал «Металлы»
Тип урока: изучение нового материала
Методы: словесный, наглядный
Формы работы: индивидуальные, коллективные
Ход урока
Организационный момент
Приветствие, проверка готовности класса к уроку, психологический настрой.
Опрос домашнего задания
Фронтальный опрос
1. Что означает слово «металл»?
2. Сколько всего металлов в ПСХЭ? Где они расположены?
3. Сколько электронов на внешнем электронном слое в атомах элементов главной и побочной подгрупп? Почему?
4. Как соединены атомы металлов между собой?
2. Химический диктант
BaCO3, CaO, LiOH, HNO3, SO3, CrO, Fe2O3, NaCl, Al(OH)3, HCl, CaCO3, KNO3
Изложение нового материала
Великий русский ученый М.В.Ломоносов так говорил о металлах: «Металлом называется твердое, непрозрачное и светлое тело, которое на огне плавить и холодное ковать можно».
1. Металлический блеск – оптическое свойство металлов, определяется числом наружных электронов. Это свойство всегда ценилось людьми и даже способствовало созданию ярких художественных образов. Данное свойство наблюдается только к кристаллах, металлы в виде порошка блеска не имеют. Все металлы блестят, непрозрачны, обычно серого цвета, потому что пространство вокруг их кристаллов заполнено электронным газом. Электроны при поглощении света начинают колебаться и испускают волны излучения, которые обнаруживает глаз человека. Металлы непрозрачны и для радиоволн: они отражают их. На этом основана радиолокация – обнаружение металлических предметов.
2. Электро- и теплопроводность. Электропроводность определяется наличием свободно движущихся электронов. Наибольшей электропроводимостью обладают серебро и медь, затем золото, алюминий и железо. Наименьшую имеет ртуть.
Теплопроводность связана с подвижностью электронов и с колебательным движением частиц в кристалле. Благодаря этим явлениям происходит быстрое выравнивание температуры в куске металла. Серебренная ложка нагревается в 500 раз быстрее, чем стеклянный стакан.
3. Ковкость и пластичность. При ударе металлы не рассыпаются на мелкие куски, а сплющиваются, меняют форму, т.е. поддаются ковке. Это происходит потому, что отдельные слои атомов и ионов в кристалле металла могут смещаться относительно друг друга без нарушения металлической связи. Электроны перемещаются по всему куску металла и связывают сместившиеся слои.
Пластичность металлов уменьшается в ряду: Au, Ag, Cu, Sn, Pb, Zn, Fe.
Золото – самый пластичный металл: из 1 г золота можно вытянуть до 2 км проволоки, а из образца размером со спичечную головку – прокатать лист площадью 50 м2.
4. Плотность металлов различна. ρ < 5 г/см3 – легкие (Li, Mn, Al, Ti), ρ > 5 г/см3 – тяжелые (Os, Cr, Zn, Sn, Mn, Fe, Pb, Au, Pt). Самым легкий является литий (ρ = 0,54 г/см3), тяжелый – осмий (ρ = 22,6 г/см3)
5. Твердость. Металлы бывают твердые и мягкие. Щелочные металлы можно резать ножом, а из вольфрама, тантала и хрома изготавливают режущие, бурильные инструменты. Саамы твердый – хром.
6. Температура плавления. Металлы, плавящиеся при температуре выше 10000С, называются тугоплавкими (вольфрам – 33900С), а ниже - легкоплавкие (ртуть = -390С), щелочной металл цезий начинает плавиться в руках человека (t = 290С)
Применение.
Металл – это точность.
Металл – это прочность,
Скорость, высота,
Блеск и красота.
Не сразу в дом пришел металл,
Не сразу ложкой, вилкой стал.
Не сразу стал он кружкой
И заводской игрушкой.
Был путь металла долог:
Сперва пришел геолог.
Нашел он гору – в ней руда.
И горняки пришли туда.
И машинист дает гудок –
К печам руду доставит в срок.
И металлический ручей
Течет из огненных печей.
Еще работе не конец:
Придут и токарь, и кузнец,
Слесарь и штамповщик,
Сварщик, фрезеровщик.
И каждый вложит труд в металл,
Чтобы металл трудиться стал.
Он в проводах несет нам свет,
Металл – коньки, велосипед,
Метро, трамвай, будильник,
Утюг и холодильник. Е.Ефимовский.
Где применяются металлы? Люди каких профессий работают с металлами?
Упр. 1-10 (устно), стр. 140
Работа в рабочей тетради упр. 186, 187, 188, стр.58-59
Д/з. §29, стр. 137-139

1. Назовите самый легкоплавкий металл.

Самый легкоплавкий металл — ртуть. Уже при комнатной температуре он является жидкостью. Температура плавления -39С.

2. Какие физические свойства металлов используют в технике?

В технике используются такие свойства металлов, как электропроводность, твердость, термоустойчивость.

3. Фотоэффект, т. е. свойство металлов испускать электроны под действием лучей света, характерен для щелочных металлов, например для цезия. Почему? Где это свойство находит применение?

Щелочные металлы имеют самую низкую энергию ионизации, т.е. они легко отдают электрон с последнего слоя. Для того, чтобы отнять этот электрон от металла, достаточно даже энергии света (фотона).

На явлении фотоэффекта основано действие фотоэлектрических приборов, получившие разнообразное применение в различных областях науки и техники — фотоэлементы, работающие на основе фотоэффекта, преобразуют энергию излучения в электрическую.

4. Какие физические свойства вольфрама лежат в основе его применения в лампах накаливания?

На тугоплавкости вольфрама основано его применение в лампах накаливания. Температура плавления 3422С.

5. Какие свойства металлов лежат в основе образных литературных выражений: «серебряный иней», «золотая заря», «свинцовые тучи»?

В литературных выражениях «серебряный иней», «золотая заря», «свинцовые тучи» заключено свойство металлов отражать световые лучи, в результате чего они приобретают характерную окраску, металлический блеск.

Из курса химии 8 класса вы уже имеете представление о природе химической связи, существующей в кристаллах металлов, - металлической связи. Напомним, что в узлах металлических кристаллических решёток располагаются атомы и положительные ионы металлов, связанные посредством обобществлённых внешних электронов, принадлежащих всему кристаллу. Эти электроны компенсируют силы электростатического отталкивания между положительными ионами и тем самым связывают их, обеспечивая устойчивость металлической решётки.

Металлическая связь обусловливает все важнейшие физические свойства металлов: пластичность, электро- и теплопроводность, металлический блеск и другие свойства, характерные для этого класса простых веществ.

Пластичность - это свойство вещества изменять форму под внешним воздействием и сохранять принятую форму после прекращения этого воздействия.

Способность расплющиваться от удара или вытягиваться в проволоку под действием силы составляет важнейшее механическое свойство металлов. Оно лежит в основе такой уважаемой большинством народов мира профессии, как профессия кузнеца. Недаром покровителем кузнечного дела у разных народов был бог огня: у греков - Гефест, у римлян - Вулкан, у славян - Сварог.

Пластичность металлов обусловлена способностью одних слоёв атом-ионов в кристаллах под внешним воздействием легко смещаться (как бы скользить) по отношению к другим слоям без разрыва связей между ними (рис. 26).

Рис. 26.
Смещение слоёв в металлической кристаллической решётке при механическом воздействии

Наиболее пластичны золото, серебро и медь. Например, из золота можно изготовить «золотую фольгу» толщиной 0,003 мм, которую используют для золочения изделий (рис. 27).

Рис. 27.
Высокую пластичность золота используют для золочения интерьеров дворцов

Высокая электропроводность большинства металлов обусловлена присутствием в их кристаллических решётках подвижных электронов, которые направленно перемещаются под действием электрического поля (рис. 28).

Рис. 28.
В металлических кристаллических решётках подвижные электроны под действием электрического поля перемещаются, создавая электрический ток

При нагревании колебательные движения ионов в кристалле усиливаются, что затрудняет направленное движение электронов и ведёт к снижению электрической проводимости. При охлаждении электропроводность металлов увеличивается и вблизи абсолютного нуля переходит в сверхпроводимость. Наибольшую электропроводность имеют серебро и медь, наименьшую - марганец, свинец, ртуть и вольфрам.

Такое свойство, как теплопроводность металлов, также связано с высокой подвижностью свободных электронов: сталкиваясь с колеблющимися в узлах решётки ионами, электроны обмениваются с ними энергией. С повышением температуры колебания ионов при посредстве электронов передаются другим ионам, и температура всего металлического предмета быстро выравнивается.

Для гладкой поверхности металлов характерен металлический блеск - результат отражения световых лучей. В порошкообразном состоянии большинство металлов теряет блеск, приобретая чёрную или серую окраску, и только алюминий и магний сохраняют блеск в порошке. Из алюминия, серебра и палладия, обладающих наиболее высокой отражательной способностью, изготовляют зеркала, в том числе и применяемые в прожекторах.

Для большинства металлов характерен белый или серый цвет. Золото и медь окрашены соответственно в жёлтый и жёлто-красный цвет.

Из других физических свойств металлов наибольший практический интерес представляют твёрдость, плотность и температура плавления.

Для всех металлов (кроме ртути) при обычных условиях характерно твёрдое агрегатное состояние. Однако твёрдость их различна. Наиболее твёрдые - металлы побочной подгруппы VI группы (VIB группы) Периодической системы Д. И. Менделеева. Так, хром по твёрдости приближается к алмазу. Самые мягкие - металлы главной подгруппы I группы (IA группы) Периодической системы Д. И. Менделеева - щелочные металлы. Например, натрий и калий легко режутся ножом.

По плотности металлы делят на лёгкие (плотность меньше 5 г/см 3) и тяжёлые (плотность больше 5 г/см 3). К лёгким относят щелочные, щёлочноземельные металлы и алюминий. Из переходных металлов сюда включают скандий, иттрий и титан. Эти металлы, благодаря лёгкости и тугоплавкости, всё шире применяют в различных областях техники.

Самый лёгкий металл - это литий (р = 0,53 г/см 3). Самый тяжёлый - осмий (р = 22,6 г/см 3).

Лёгкие металлы обычно легкоплавки, галлий может плавиться уже на ладони руки, а тяжёлые металлы - тугоплавки. Наибольшей температурой плавления, которая равна 3380 °С, обладает вольфрам. Это свойство вольфрама используют для изготовления ламп накаливания (рис. 29, 1). Кроме него в конструкцию лампы входят ещё семь металлов.

Рис. 29.
Лампы, при изготовлении которых используют различные металлы: 1 - лампа накаливания; 2 - галогенная лампа; 3 - люминесцентная лампа; 4 - светодиодная лампа

В Российской Федерации в настоящее время, как и ранее в Евросоюзе и США, на государственном уровне принято решение о замене привычных ламп накаливания на более экономичные и долговечные современные лампы, например галогенные, люминесцентные и светодиодные. Галогенная лампа (рис. 29, 2) - это та же лампа накаливания с вольфрамовой нитью, заполненная инертными газами с добавкой паров галогенов (брома или иода). Люминесцентные (рис. 29, 3) - это хорошо знакомые вам лампы дневного света, имеющие один существенный недостаток - они содержат ртуть, а потому нуждаются в соблюдении особых правил утилизации на специальных пунктах приёма. Светодиодные лампы (рис. 29, 4) - самые экономичные и самые долговечные (срок работы до 100 тыс. ч), но пока и самые дорогие из ламп.

Рис. 30.
Металлы условно делят на две группы: чёрные (а - чугун; б - сталь); цветные (в - медь; г - алюминий)

В технике, как вы уже знаете, металлы делят на чёрные (железо и его сплавы) и цветные (все остальные, более подробно о них будет рассказано в следующем параграфе) (рис. 30). Золото, серебро, платину и некоторые другие металлы относят к драгоценным металлам (рис. 31).

Рис. 31.
Драгоценные металлы: золото (1, 2); платина (3); серебро (4, 5);

Новые слова и понятия

  1. Пластичность.
  2. Электропроводность и теплопроводность.
  3. Металлический блеск.
  4. Твёрдость металлов.
  5. Плотность металлов.
  6. Лёгкие и тяжёлые металлы.
  7. Чёрные и цветные металлы.
  8. Драгоценные металлы.

Задания для самостоятельной работы

  1. Назовите самый легкоплавкий металл.
  2. Какие физические свойства металлов используют в технике.
  3. Фотоэффект, т. е. свойство металлов испускать электроны под действием лучей света, характерен для щелочных металлов, например для цезия. Почему? Где это свойство находит применение?
  4. Какие физические свойства вольфрама лежат в основе его применения в лампах накаливания?
  5. Какие свойства металлов лежат в основе образных литературных выражений: «серебряный иней», «золотая заря», «свинцовые тучи»?