Как доказать что электрическое поле материально. Электрическое поле – это материальный объект, делающий возможным взаимодействие между заряженными телами

Сигналы о далеких событиях мы всегда получаем с помощью промежуточной среды.. Например, телефонная связь осуществляется с помощью электрических проводов, передача речи на расстояние происходит с помощью звуковых волн, распространяющихся в воздухе

(в безвоздушном пространстве звук распространяться не может). Поскольку возникновение сигнала всегда представляет собой материальное явление, то его распространение, связанное с передачей энергии от точки к точке пространства, может происходить только в материальной среде.

Важнейшим признаком того, что в передаче сигнала участвует промежуточная среда, является конечная скорость распространения сигнала от источника до наблюдателя, которая зависит от свойств среды. Например, звук в воздухе распространяется со скоростью около 330 м/с.

Если бы в природе существовали явления, при которых скорость распространения сигналов была бесконечно большой, т. е. сигнал мгновенно передавался бы от одного тела к другому при любом расстоянии между ними, то это означало бы, что тела могут действовать друг на друга на расстоянии и при отсутствии материи между ними. Такое воздействие тел друг на друга в физике называется дальнодействием. Когда же тела действуют друг на друга с помощью материи, находящейся между ними, их взаимодействие называется близкодействием. Следовательно, при близкодействии тело непосредственно воздействует на материальную среду, а эта среда уже воздействует на другое тело.

Для передачи воздействия одного тела на другое через промежуточную среду необходимо некоторое время, так как любые процессы в материальной среде передаются от точки к точке с конечной и вполне определенной скоростью. Математическое обоснование теории близкодействия было дано выдающимся английским ученым Д. Максвеллом (1831-1879 гг.). Так как сигналов, распространяющихся мгновенно, в природе не существует, в дальнейшем мы будем придерживаться теории близкодействия.

В некоторых случаях распространение сигналов происходит с помощью вещества, например, распространение звука в воздухе. В других случаях вещество непосредственно в передаче сигналов не участвует, например, свет от Солнца доходит до Земли через безвоздушное пространство. Следовательно, материя существует не только в виде вещества.

В тех случаях, когда воздействие тел друг на друга может происходить через безвоздушное пространство, материальную среду, передающую это воздействие, называют полем. Таким образом, материя существует в виде вещества и в виде? поля. В зависимости от рода сил, действующих между телами, поля могут быть различных видов. Поле, передающее воздействие одного тела на другое в соответствии с законом всемирного тяготения, называется полем тяготения. Поле, передающее воздействие одного неподвижного электрического заряда на другой неподвижный заряд в соответствии с законом Кулона, называется электростатическим или электрическим полем.

Опыт показал, что электрические сигналы распространяются в безвоздушном пространстве с очень большой, но конечной скоростью, которая равна приблизительно 300 000 км/с (§ 27.7). Это

доказывает, что электрическое поле - такая же физическая реальность, как и вещество. Изучение свойств поля позволило осуществить передачу энергии на расстояние с помощью поля и использовать это для нужд человечества. Примером может служить действие радиосвязи, телевидения, лазеров и т. п. Однако многие свойства поля изучены плохо или еще не известны. Изучение физических свойств поля и взаимодействия между полем и веществом является одной из важнейших научных проблем современной физики.

Любой электрический заряд создает в пространстве электрическое поле, с помощью которого он взаимодействует с другими зарядами. Электрическое поле действует только на электрические заряды. Поэтому обнаружить такое поле можно только одним способом: внести в интересующую нас точку пространства пробный заряд Если в этой точке поле есть, то на будет действовать электрическая сила.

Когда поле исследуют пробным зарядом, то считают, что он своим присутствием не искажает исследуемое поле. Это означает, что величина пробного заряда должна быть очень малой по сравнению с зарядами, создающими поле. В качестве пробного заряда условились использовать положительный заряд.

Из закона Кулона следует, что абсолютная величина силы взаимодействия электрических зарядов уменьшается при увеличении расстояния между ними, но никогда не исчезает совсем. Это означает, что теоретически поле электрического заряда простирается до бесконечности. Однако практически мы считаем, что поле имеется только там, где на пробный заряд действует заметная сила.

Отметим еще, что при движении заряда вместе с ним перемещается и его поле. Когда заряд удаляется настолько, что электрическая сила на пробный заряд в какой-либо точке пространства уже практически не действует, мы говорим, что поле исчезло, хотя в действительности оно переместилось в другие точки пространства.

Действие одних заряженных тел на другие заряженные тела осуществляется без их прямого контакта, посредством электрического поля.

Электрическое поле материально . Оно существует независимо от нас и наших знаний о нем.

Электрическое поле создается электрическими зарядами и обнаруживается при помощи электрических зарядов по действию на них определенной силы.

Электрическое поле распространяется с конечной скоростью 300000 км/с в вакууме.

Так как одним из основных свойств электрического поля является его действие на заряженные частицы с определенной силой, то для введения количественных характеристик поля необходимо в исследуемую точку пространства поместить небольшое тело с зарядом q (пробный заряд). На это тело со стороны поля будет действовать сила

Если изменить величину пробного заряда, например, в два раза, в два раза изменится и сила, действующая на него.

При изменении величины пробного заряда в n раз, в n раз изменяется и сила, действующая на заряд.

Отношение же силы, действующей на пробный заряд, помещенный в данную точку поля, к величине этого заряда, есть величина постоянная и не зависящая ни от этой силы, ни от величины заряда, ни от того, есть ли вообще в исследуемой точке поля какой-либо заряд. Это отношение обозначается буквой и принимается за силовую характеристику электрического поля. Соответствующая физическая величина называется напряженностью электрического поля .

Напряженность показывает, какая сила действует со стороны электрического поля на единичный заряд, помещенный в данную точку поля.

Чтобы найти единицу напряженности, надо в определяющее уравнение напряженности подставить единицы силы – 1 Н и заряда – 1 Кл. Получаем: [ E ] = 1 Н / 1 Кл = 1 Н/Кл.

Для наглядности электрические поля на чертежах изображаются с помощью силовых линий.

Электрическое поле может совершать работу по перемещению заряда из одной точки в другую. Следовательно, заряд, помещенный в заданную точку поля, обладает запасом потенциальной энергии .

Энергетические характеристики поля можно ввести аналогично введению силовой характеристики.

При изменении величины пробного заряда, меняется не только сила, действующая на него, но и потенциальная энергия этого заряда. Отношение же энергии пробного заряда, находящегося в данной точке поля, к величине этого заряда, является величиной постоянной и не зависящей ни от энергии, ни от заряда.

Чтобы получить единицу потенциала, надо в определяющее уравнение потенциала подставить единицы энергии – 1 Дж и заряда – 1 Кл. Получаем: [φ] = 1 Дж / 1 Кл = 1 В.

Эта единица имеет собственное наименование 1 вольт.

Потенциал поля точечного заряда прямо пропорционален величине заряда, создающего поле и обратно пропорционален расстоянию от заряда до данной точки поля:

Электрические поля на чертежах можно изображать и с помощью поверхностей равного потенциала, называемых эквипотенциальными поверхностями .

При перемещении электрического заряда из точки с одним потенциалом в точку с другим потенциалом совершается работа.

Физическая величина, равная отношению работы по перемещению заряда из одной точки поля в другую, к величине этого заряда, называется электрическим напряжением :

Напряжение показывает, чему равна работа, совершаемая электрическим полем при перемещении заряда в 1 Кл из одной точки поля в другую.

Единицей напряжения, так же как и потенциала, является 1 В.

Напряжение между двумя точками поля, расположенными на расстоянии d друг от друга, связано с напряженностью поля:

В однородном электрическом поле работа по перемещению заряда из одной точки поля в другую не зависит от формы траектории и определяется только величиной заряда и разностью потенциалов точек поля.

Вокруг каждого заряда на основании теории близкодействия существует электрическое поле. Электрическое поле – материальный объект, постоянно существует в пространстве и способно действовать на другие заряды. Электрическое поле распространяется в пространстве со скоростью света. Физическая величина, равная отношению силы, с которой электрическое поле действует на пробный заряд (точечный положительный малый заряд, не влияющий на конфигурацию поля), к значению этого заряда, называется напряженностью электрического поля . Используя закон Кулона возможно получить формулу для напряженности поля, создаваемого зарядом q на расстоянии r от заряда . Напряженность поля не зависит от заряда, на который оно действует. Линии напряженности начинаются на положительных зарядах и оканчиваются на отрицательных, или же уходят в бесконечность. Электрическое поле, напряженность которого одинакова по всем в любой точке пространства, называется однородным электрическим полем. Приблизительно однородным можно считать поле между двумя параллельными разноименно заряженными металлическими пластинками. При равномерном распределении заряда q по поверхности площади S поверхностная плотность заряда равна . Для бесконечной плоскости с поверхностной плотностью заряда s напряженность поля одинакова во всех точках пространства и равная .Разность потенциалов.

При перемещении заряда электрическим полем на расстояние совершенная работа равна . Как и в случае с работой силы тяжести, работа кулоновской силы не зависит от траектории перемещения заряда. При изменении направления вектора перемещения на 180 0 работа сил поля меняет знак на противоположный. Таким образом, работа сил электростатического поля при перемещении заряда по замкнутому контуру равна нулю. Поле, работа сил которого по замкнутой траектории равна нулю, называется потенциальным полем.

Точно так же, как тело массой m в поле силы тяжести обладает потенциально энергией, пропорциональной массе тела, электрический заряд в электростатическом поле обладает потенциальной энергией W p , пропорциональной заряду. Работа сил электростатического поля равна изменению потенциальной энергии заряда, взятому с противоположным знаком. В одной точке электростатического поля разные заряды могут обладать различной потенциальной энергией. Но отношение потенциальной энергии к заряду для данной точки есть величина постоянная. Эта физическая величина называется потенциалом электрического поля , откуда потенциальная энергия заряда равна произведению потенциала в данной точке на заряд. Потенциал – скалярная величина, потенциал нескольких полей равен сумме потенциалов этих полей. Мерой изменения энергии при взаимодействии тел является работа. При перемещении заряда работа сил электростатического поля равна изменению энергии с противоположным знаком, поэтому . Т.к. работа зависит от разности потенциалов и не зависит от траектории между ними, то разность потенциалов можно считать энергетической характеристикой электростатического поля. Если потенциал на бесконечном расстоянии от заряда принять равным нулю, то на расстоянии r от заряда он определяется по формуле

Электрическое поле, согласно элементарным физическим представлениям, есть не что иное, как особый вид материальной среды, возникающий вокруг заряженных тел и влияющий на организацию взаимодействия между такими телами с определенной конечной скоростью и в строго ограниченном пространстве.

Уже давно доказано, что электрическое поле может возникать как у неподвижных, так и у находящихся в движении тел. Основным признаком наличия этого является его воздействие на

Одной из главных количественных является понятие «напряженность поля». В числовом выражении этот термин означает отношение силы, которая действует на пробный заряд, непосредственно к количественному выражению этого заряда.

То, что заряд пробный, означает, что он сам никакого участия в создании данного поля не принимает, а его величина настолько мала, что не ведет ни к каким искажениям исходных данных. Напряженность поля измеряется в В/м, что условно равно Н/Кл.

Известный английский исследователь М. Фарадей ввел в научный оборот метод графического изображения электрического поля. По его мнению, этот особый вид материи на чертеже должен изображаться в виде непрерывных линий. Они впоследствии стали называться «линии напряженности электрического поля», а их направление, исходя из основных физических законов, совпадает с направлением напряженности.

Силовые линии необходимы, чтобы показать такие качественные характеристики напряженности, как густота или плотность. При этом плотность линий напряженности зависит от их количества на единицу поверхности. Создаваемая картина силовых линий позволяет определить количественное выражение напряженности поля на отдельных его участках, а также узнать, каким образом она изменяется.

Достаточно любопытными свойствами обладает электрическое поле диэлектриков. Как известно, диэлектрики - это вещества, в которых практически нет свободных заряженных частиц, поэтому, как следствие, они не способны проводить К таким веществам следует отнести в первую очередь все газы, керамику, фарфор, дистиллированную воду, слюду и т.д.

Для того чтобы определить напряженность поля в диэлектрике, следует пропустить через него электрическое поле. Под его действием связанные заряды в диэлектрике начинают смещаться, однако покинуть пределы своих молекул они не в состоянии. Направленность смещения подразумевает, что положительно заряженные смещаются вдоль направления электрического поля, а отрицательно заряженные - против. В результате этих манипуляций внутри диэлектрика возникает новое электрическое поле, направление которого прямо противоположно внешнему. Это внутреннее поле заметно ослабляет внешнее, следовательно, напряженность последнего падает.

Напряженность поля является его важнейшей количественной характеристикой, которая прямо пропорционально той силе, с которой этот особый вид материи действует на внешний электрический заряд. Несмотря на то, что увидеть эту величину невозможно, с помощью чертежа силовых линий напряженности можно составить представление о ее плотности и направленности в пространстве.

Согласно закону Кулона сила взаимодействия между двумя неподвижными заряженными точечными телами пропорциональна произведению их зарядов и обратно пропорциональна квадрату расстояния между ними.

Электрическая сила взаимодействия между заряженными телами зависит от величины их зарядов, размеров тел, расстояния между ними, а также от того, в каких частях тел находятся эти заряды. Если размеры заряженных тел значительно меньше расстояния между ними, то такие тела называют точечными. Сила взаимодействия между точечными заряженными телами зависит только от величины их зарядов и расстояния между ними.

Закон, описывающий взаимодействие двух точечных заряженных тел, был установлен французским физиком Ш. Кулоном, когда он измерял силу отталкивания между небольшими одноимённо заряженными металлическими шариками (см. рис. 34а). Установка Кулона состояла из тонкой упругой серебряной нити (1) и подвешенной на ней лёгкой стеклянной палочки (2), на одном конце которой был укреплён заряженный металлический шарик (3), а на другом противовес (4). Сила отталкивания между неподвижным шариком (5) и шариком 3 приводила к закручиванию нити на некоторый угол, a, по которому можно было определить величину этой силы. Сближая и отдаляя между собой одинаково заряженные шарики 3 и 5, Кулон установил, что сила отталкивания между ними обратно пропорциональна квадрату расстояния между ними.

Чтобы установить, как сила взаимодействия между шариками зависит от величины их зарядов, Кулон поступал следующим образом. Сначала он измерял силу, действующую между одинаково заряженными шариками 3 и 5, а потом касался одного из заряженных шариков (3) другим, незаряженным шариком такого же размера (6). Кулон справедливо полагал, что при соприкосновении одинаковых металлических шариков электрический заряд поровну распределится между ними, и поэтому на шарике 3 останется только половина его первоначального заряда. При этом, как показали опыты, сила отталкивания между шариками 3 и 5 уменьшалась в два раза, по сравнению с первоначальной. Изменяя подобным образом заряды шариков, Кулон установил, что они взаимодействуют с силой, пропорциональной произведению их зарядов.

В результате многочисленных опытов Кулон сформулировал закон, определяющий модуль силы F 12 , действующей между двумя неподвижными точечными телами с зарядами q 1 и q 2 , расположенными на расстоянии r друг от друга:

где k – коэффициент пропорциональности, значение которого зависит от используемой системы единиц, и который часто по причинам, связанным с историей введения систем единиц, заменяют на (4pe0)-1 (см. 34.1). e0 называют электрической постоянной. Вектор силы F 12 направлен вдоль прямой, соединяющей тела, так, что разноимённо заряженные тела притягиваются, а одноимённо заряженные отталкиваются (рис. 34б). Этот закон (см. 34.1) называют законом Кулона, а соответствующие электрические силы – кулоновскими. Закон Кулона, а именно зависимость силы взаимодействия от второй степени расстояния между заряженными телами, до сих пор подвергается экспериментальной проверке. В настоящее время показано, что показатель степени в законе Кулона может отличаться от двойки не более, чем на 6.10-16.



В системе СИ единицей электрического заряда служит кулон (Кл). Заряд в 1 Кл равен заряду, проходящему за 1 с через поперечное сечение проводника при силе тока, равной 1 амперу (А). В системе СИ

k = 9.109 Н.м 2 /Кл 2 , а e0 = 8,8.10-12 Кл 2 /(Н.м 2) (34.2)

Элементарный электрический заряд, e, в СИ равен:

e = 1,6.10 -19 Кл. (34.3)

По своему виду закон Кулона очень похож на закон всемирного тяготения (11.1), если заменить в последнем массы на заряды. Однако, несмотря на внешнее сходство, гравитационные силы и кулоновские отличаются друг от друга тем, что

1. гравитационные силы всегда притягивают тела, а кулоновские могут как притягивать, так и отталкивать тела,

2. кулоновские силы гораздо сильнее гравитационных, например, кулоновская сила, отталкивающая два электрона друг от друга, в 1042 раз больше силы их гравитационного притяжения.

Вопросы для повторения:

· Что такое точечное заряженное тело?

· Опишите опыты, с помощью которых Кулон установил закон, названный его именем?

Рис. 34. (а) - схема экспериментальной установки Кулона для определения сил отталкивания между одноимёнными зарядами; (б) – к определению величины и направления действия кулоновских сил при использовании формулы (34.1).

§ 35. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ. НАПРЯЖЁННОСТЬ. ПРИНЦИП СУПЕРПОЗИЦИИ ПОЛЕЙ.

Закон Кулона, позволяет вычислить силу взаимодействия между двумя зарядами, но не объясняет, как один заряд действует на другой. Через какое время, например, один из зарядов «почувствует», что другой заряд стал приближаться или отдаляться от него? Связаны ли чем-нибудь между собой заряды? Чтобы ответить на эти вопросы, великие английские физики М. Фарадей и Дж. Максвелл ввели понятие электрического поля – материального объекта, существующего вокруг электрических зарядов. Таким образом, заряд q1 порождает вокруг себя электрическое поле, а другой заряд q2, оказавшись в этом поле, испытывает на себе действие заряда q1 согласно закону Кулона (34.1). При этом, если положение заряда q1 изменились, то изменение его электрического поля будет происходить постепенно, а не мгновенно, так, что на расстоянии L от q1 изменения поля произойдут через промежуток времени L/c, где с – скорость света, 3.108 м/с. Запаздывание изменений электрического поля доказывает то, что взаимодействие между зарядами согласуется с теорией близкодействия. Эта теория объясняет любое взаимодействие между телами, даже отдалёнными друг от друга, существованием каких-либо материальных объектов или процессов между ними. Материальным объектом, осуществляющим взаимодействие между заряженными телами, является их электрическое поле.

Чтобы охарактеризовать данное электрическое поле, достаточно измерить силу, действующую на точечный заряд в различных областях этого поля. Опыты и закон Кулона (34.1) показывают, что сила, действующая на заряд со стороны поля, пропорциональна величине этого заряда. Поэтому отношение силы F, действующей на заряд в данной точке поля, к величине этого заряда q, уже не зависит от q и является характеристикой электрического поля, называемой его напряжённостью, E:

Напряжённость электрического поля, как следует из (35.1), является вектором, направление которого совпадает с направлением силы, действующей в данной точке поля на положительный заряд. Из закона Кулона (34.1) следует, что модуль напряжённости E поля точечного заряда q зависит от расстояния r до него следующим образом:

Векторы напряжённости в различных точках электрического поля положительного и отрицательного зарядов показаны на рис. 35а.

Если электрическое поле образовано несколькими зарядами (q 1 , q 2 , q 3 и т.д.), то, как показывает опыт, напряжённость E в любой точке этого поля равна сумме напряжённостей E 1 , E 2 , E 3 и т.д. электрических полей, создаваемых зарядами q 1 , q 2 , q 3 и т.д., соответственно:

В этом и состоит принцип суперпозиции (или наложения) полей, который позволяет определить напряжённость поля, созданного несколькими зарядами (рис. 35б).

Чтобы показать, как изменяется напряжённость поля в различных его областях, рисуют силовые линии - непрерывные линии, касательные к которым в каждой точке совпадают с векторами напряжённости (рис. 35в). Силовые линии не могут пересекаться между собой, т.к. в каждой точке вектор напряжённости поля имеет вполне определённое направление. Они начинаются и заканчиваются на заряженных телах, вблизи которых модуль напряжённости и густота силовых линий возрастает. Густота силовых линий пропорциональна модулю напряжённости электрического поля.

Вопросы для повторения:

· Что такое электрическое поле и как оно связано с теорией близкодействия?

· Дайте определение напряжённости электрического поля.

· Сформулируйте принцип суперпозиции полей.

· Чему соответствуют силовые линии поля, и каковы их свойства?

Рис. 35. (а) - векторы напряжённости в различных точках электрического поля положительного (верх) и отрицательного (низ) заряда; векторы напряжённости (б) и те же векторы вместе с силовыми линиями (в) электрического поля двух точечных зарядов разного знака.

§ 36. ПРОВОДНИКИ И ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ.