Сопряжение двух пересекающихся прямых линий. Сопряжения

Записи в тетради фиолетовый цвет, желтый фон – пояснения

Читаем понимаем, то что черный шрифт

Делаем то, что не сделано в тетради, если ее нет, то на А4 - форматах, что бы вклеить в тетрадь

Тема. Сопряжения.

Значение сопряжений в техническом черчении

Графическая работа № 5. Чертёж технической детали с применением сопряжений. Формат А4 (210 × 297).

Плавный переход одной линии в другую называется сопряжением. Общая для сопрягаемых линий точка называется точкой сопряжения, или точкой перехода. Для построения сопряжений надо найти центр сопряжения и точки сопряжений. Рассмотрим различные типы сопряжений.

Сопряжение прямого угла. Пусть необходимо выполнить сопряжение прямого угла радиусом сопряжения, равным отрезку АВ (R=AB). Найдем точки сопряжения. Для этого поставим ножку циркуля в вершину угла и раствором циркуля, равным отрезку АВ, сделаем засечки на сторонах угла. Полученные точки а и b являются точками сопряжения. Найдем центр сопряжения - точку, равноудаленную от сторон угла. Раствором циркуля, равным радиусу сопряжения, из точек а и b проведем внутри угла две дуги до пересечения друг с другом. Полученная точка О - центр сопряжения. Из центра сопряжения описываем дугу заданного радиуса от точки а до точки Ь. Обводим вначале дугу, а затем прямые линии

Сопряжение острого и тупого углов .

Чтобы построить сопряжение острого угла, возьмем раствор циркуля, равный заданному радиусу R=AB. Поочередно поставим ножку циркуля в двепроизвольные точки на каждой из сторон острого углса. Проведем четыре дуги внутри угла, жак показано на ргас. 71, а. К ним проведем две касательные до пересечения в точке О - центре сопряжения (рис. 71, б)- Из центра сопряжения опустим перпендикуляры на стороны угла. Полученные точки а и b будут точками сопряжения (рис. 71, б). Поставив ножку циркуля в центр сопряжения (О), раствором циркуля, равным заданному радиусу сопряжения (R=AB), проведем дугу сопряжения.

Сопряжение двух параллельных прямых.

Заданы две параллельные прямые и точка d, лежащая на одной из них (рис.72). Рассмотрим последовательность построения сопряжения двух прямых. В точке d восставим перпендикуляр до пересечения его с другой прямой. Точки d и е являются точками сопряжения. Разделив отрезок de пополам, найдем центр сопряжения. Из него радиусом сопряжения проводим дугу, сопрягающую прямые.

Сопряжение дуг двух окружностей дугой заданного радиуса.

Существует несколько типов сопряжения дуг двух окружностей дугой заданного радиуса: внешнее, внутреннее и смешанное.

Построение внутреннего сопряжения .

а). радиусы сопрягаемых окружностей R1 и R2;

б). расстояние l1 и l2 между центрами этих дуг;

в). радиус R сопрягающей дуги.

Требуется:

б).найти точки сопряжения s1 и s2;

в).провести дугу сопряжения.

По заданным расстояниям между центрами l1 и l2 на чертеже намечают центры О и О1, из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О1 проводят вспомогательную дугу окружности радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R2, а из центра О -радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R1. Вспомогательные дуги пересекутся в точке О2, которая и будет искомым центром сопрягающей дуги.

Для нахождения точек сопряжения точку О2 соединяют с точками О и О1 прямыми линиями. Точки пересечения продолжения прямых О2О и О2О1 с сопрягаемыми дугами являются искомыми точками сопряжения(точки s и s1).

Радиусом R из центра О2 проводят сопрягающую дугу между точками сопряжения s и s1.


Построение внешнего сопряжения.

б).расстояние l1 и l2 между центрами этих дуг;

в).радиус R сопрягающей дуги.

Требуется:

а).определить положение центра О2 сопрягающей дуги;

в).найти точки сопряжения s и s1;

в).провести дугу сопряжения.

Построение внешнего сопряжения показано на рис. 18,б. По заданным расстояниям между центрами l1 и l2 на чертеже находят точки О и О1, из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1 и сопрягающей R, а из центра О1 -радиусом, равным сумме радиусов сопрягаемой дуги R2 и сопрягающей R. Вспомогательные дуги пересекутся в точке О2, которая будет искомым центром сопрягающей дуги.

Для нахождения точек сопряжения центры дуг соединяют прямыми линиями ОО2 и О2О2. Эти две прямые пересекают сопрягаемые дуги в точках сопряжения s и s1. Из центра О2 радиусом R проводят сопрягающую дугу, ограничивая ее точками сопряжения s1 и s.

Построение смешанного сопряжения .

а).радиусы R1 и R2 сопрягаемых дуг окружностей;

б).расстояния l1 и l2 между центрами этих дуг;

в).радиус R сопрягающей дуги.

Требуется:

а).определить положение центра О2 сопрягающей дуги;

б).найти точки сопряжения s и s1;

в).провести дугу сопряжения.

По заданным расстояниям между центрами l1 и l2 на чертеже намечают центры О и О1, из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1 и сопрягающей R, а из центра О1 -радиусом, равным разности радиусов R и R2. Вспомогательные дуги пересекутся в точке О2, которая будет искомым центром сопрягающей дуги.

Соединив точки О и О2 прямой, получают точку сопряжения s1; соединив точки О1 и О2, находят точку сопряжения s. Из центра О2 проводят дугу сопряжения от s до s1.

При вычерчивании контура детали необходимо разобраться, где имеются плавные переходы, и представить себе, где надо выполнить те или иные виды сопряжения.

Для приобретения навыков построения сопряжения выполняют упражнения по вычерчиванию контуров сложных деталей. Перед упражнением необходимо просмотреть задание, наметить порядок построения сопряжений и только после этого приступить к выполнению построений.

Тема Лекальные кривые.

Общие сведения. Правила пользования лекалом. Построение лекальных кривых: эллипса, параболы, гиперболы, циклоиды, синусоиды, эвольвенты, Спирали Архимеда.Практическая работа. Упражнение на построение лекальных кривых

Коробовые кривые линии.

Некоторые детали машин, инструменты для обработки металлов имеют контуры, ограниченные замкнутыми кривыми линиями, состоящими из взаимно сопрягающихся дуг окружностей различных диаметров.

Коробовыми кривыми называются кривые, образованные сопряжением дуг окружностей. К таким кривым относятся овалы, овоиды, завитки.

Построение овала.

Овал- замкнутая коробовая кривая, имеющая две оси симметрии.

Последовательность построения овала по заданному размеру большой оси овала АВ производят следующим образом (рис. ,а). Ось АВ делят на три равные части (АО1, О1О2, О2В). Радиусом, равным О1О2, из точек деления О1 и О2 проводят окружности, пересекающиеся в точках m и n.

Соединив точки n и m с точками О1 и О2, получают прямые nО1, nО2, mО1, mО2, которые продолжают до пересечения с окружностями. Полученные точки 1,2,3, и 4 являются точками сопряжения дуг. Из точек m и n, как из центров, радиусом R1, равным n2 и m3, проводят верхнюю дугу 12 и нижнюю дугу 34.

Проводят оси АВ и СD. Из точки их пересечения радиусом ОС(половина малой оси овала) проводят дугу до пересечения с большой осью овала АВ в точке N. Точку А соединяют прямой с точкой С и на ней от точки С откладывают отрезок NB, получают точку N. В середине отрезка AN1 восставляют перпендикуляр и продолжают его до пересечения с большой и малой осями овала в точках О1 и n. Расстояние ОО1 откладывают по большой оси овала вправо от точки О, а расстояние on от точки О откладывают по малой оси овала вверх, получают точки n1 и О2. Точки n и n1 являются центрами верхней дуги 12 и нижней дуги 34 овала, а точки О1 и О2-центрами дуг 13 и 24. Получают искомый овал.

Построение завитков.

Завиток- плоская спиральная кривая, вычерчиваемая циркулем путем сопряжения дуг окружностей.

Построение завитков выполняют при вычерчивании таких деталей, как пружины и спиральные направляющие.

Построение овоида.

Овоид- замкнутая коробовая кривая,имеющая только одну ось симметрии. Радиусы R и R1 дуг окружностей, центры которых лежат на оси симметрии овоида, не равны друг другу.

Построение овоида по заданной оси АВ выполняется в следующей последовательности.

Проводят окружность диаметром, равным оси АВ овоида. Из точек А и В через точку О1(точка пересечения окружности радиуса R с осью симметрии) проводят прямые. Из точек А и В, как из центров, радиусом R2, равным оси АB, проводят дуги An и Bm, а из центра О1 радиусом R1 проводят малую дугу овоида nm.

Построение завитков выполняется из двух, трех и более центров и зависит от формы и размеров «глазка», который может быть окружностью, правильным треугольником, шестиугольником и т.п. Последовательность построения завитка следующая.

Вычерчивается в тонких линиях контур «глазка», например окружность с диаметром О1О2. Из точек О1 и О2, как из центров, проводят две сопряженные между собой полуокружности. Верхняя полуокружность О21 из центра О1, нижняя полуокружность 12 из центра О2. Получается искомый завиток.

Лекальные кривые.

При выполнении чертежей часто приходится прибегать к вычерчиванию кривых, состоящих из ряда сопряженных частей, которые невозможно провести циркулем. Такие кривые строят обычно по ряду принадлежащих им точек, которые затем соединяют плавной линией сначала от руки карандашом, а затем обводят при помощи лекал.

Рассматриваемые лекальные кривые располагаются в одной плоскости и называются поэтому плоскими.

Лекальные кривые широко применяются в машиностроении для очертания различных технических деталей, например: кронштейнов, ребер жесткости, кулачков, зубчатых колес, фасонного инструмента и т.п.

К лекальным кривым относят эллипс, параболу, гиперболу, циклоиду, эпициклоиду, эвольвенту, синусоиду, спираль Архимеда и др.

Ниже рассмотрены способы построения кривых, наиболее часто встречающихся в технике.

Построение эллипса.

Эллипс- замкнутая плоская кривая, сумма расстояний каждой точки которой до двух данных точек(фокусов), лежащих на большой оси, есть величина постоянная и равная длине большой оси.

Широко применяемый в технике способ построения эллипса по большой(АВ) и малой(СD) осям.

Проводят две перпендикулярные осевые линии. Затем от центра О откладывают вверх и вниз по вертикальной оси отрезки, равные длине малой полуоси, а влево и вправо по горизонтальной оси-отрезки, равные длине большой полуоси.

Из центра О радиусами ОА и ОС проводят две концентрические окружности и ряд лучей-диаметров. Из точек пересечения лучей с окружностями проводят линии, параллельные осям эллипса, до взаимного пересечения в точках, принадлежащих эллипсу. Полученные точки соединяют от руки и обводят по лекалу.

Построение параболы.

Парабола- плоская кривая, каждая точка которой равноудалена от директрисы DD1 прямой, перпендикулярной к оси симметрии параболы, и от фокуса F-точки, расположенной на оси симметрии параболы.

Расстояние KF между директрисой и фокусом называется параметром p параболы. Точка О, лежащая на оси симметрии, называется вершиной параболы и делит параметр p пополам.

Для построения параболы по заданной величине параметра p проводят ось симметрии параболы(на рисунке вертикально) и откладывают отрезок KF=p. Через точку K перпендикулярно оси симметрии проводят директрису DD1. Отрезок KF делят пополам и получают вершину О параболы. От вершины О вниз на оси симметрии намечают ряд произвольных точек I-IV с постепенно увеличивающимся расстоянием между ними. Через эти точки проводят вспомогательные прямые, перпендикулярные оси симметрии. На вспомогательных прямых из фокуса F делают засечки радиусом, равным расстоянию от прямой до директрисы. Например, из точки F на вспомогательной прямой, проходящей через точки V, делают засечку дугой R1=KV; полученная точка 5 принадлежит параболе.

В станкостроении и других отраслях машиностроения часто применяются детали, контурные очертания которых выполнены по параболе, например, стойка и рукав радиально-сверлильного станка.

Построение синусоиды .

Синусоида- плоская кривая, изображающая изменение синуса в зависимости от изменения угла.

Величина L называется длиной волны синусоиды, L=ПR.

Для построения синусоиды проводят горизонтальную ось и на ней откладывают заданную длину АВ (рис. 24), Отрезок АВ делят на несколько равных частей, например, на 12. Слева вычерчивают окружность, радиус которой равен величине амплитуды, и делят её также на 12 равных частей; точки деления нумеруют и через них проводят горизонтальные прямые. Из точек деления отрезка АВ восставляют перпендикуляры к оси синусоиды и на их пересечении с горизонтальными прямыми находят точки синусоиды.

Полученные точки синусоиды а1, а2, а3,...соединяют по лекалу кривой.

При выполнении чертежей деталей или инструментов, поверхности которых очерчены по синусоиде, величину длины волны АВ обычно выбирают независимо от размера амплитуды r. Например, при вычерчивании шнека длина волны L меньше размера 2Пr. Такая синусоида называется сжатой. Если длина волны больше размера 2Пr, то синусоида называется вытянутой.

Построение гиперболы.

Гипербола- плоская кривая, состоящая из двух разомкнутых, симметрично расположенных ветвей(рис. 25). Разность расстояний от каждой точки гиперболы до двух данных точек(фокусов F и F1) есть величина постоянная и равная расстоянию между вершинами гиперболы А и В.

Рассмотрим прием построения гиперболы по заданным вершинам А и В и фокусному расстоянию FF1

Разделив фокусное расстояние FF1 пополам, получают точку О, от которой в обе стороны откладывают по половине заданного расстояния между вершинами А и В. Вниз от фокуса F намечают рад произвольных точек 1,2,3,4...с постепенно увеличивающимся расстоянием между ними. Из фокуса F описывают дугу вспомогательной окружности радиусом R, равным, например, расстоянию от вершины гиперболы В до точки 3. Из фокуса F1 проводят вторую дугу вспомогательной окружности радиусом r, равным расстоянию от вершины А до точки 3. На пересечении этих дуг находят точки С и С1, принадлежащие гиперболе. Таким же способом находят остальные точки гиперболы.

Центр сопряжения - точка, равноудаленная от сопрягаемых линий. А общая для этих линий точка называется точкой сопряжения .

Построение сопряжений выполняется с помощью циркуля.

Возможны следующие виды сопряжения:

1) сопряжение пересекающихся прямых с помощью дуги заданного радиуса R (скругление углов);

2) сопряжение дуги окружности и прямой с помощью дуги заданного радиуса R;

3) сопряжение дуг окружностей радиусов R 1 и R 2 прямой линией;

4) сопряжение дуг двух окружностей радиусов R 1 и R 2 дугой заданного радиуса R (внешнее, внутреннее и смешанное сопряжение).

При внешнем сопряжении центры сопрягаемых дуг радиусов R 1 и R 2 лежат вне сопрягающей дуги радиуса R. При внутреннем сопряжении центры сопрягаемых дуг лежат внутри сопрягающей дуги радиуса R. При смешанном сопряжении центр одной из сопрягаемых дуг лежит внутри сопрягающей дуги радиуса R, а центр другой сопрягаемой дуги - вне ее.

В табл. 1 показаны построения и даны краткие объяснения к построениям простых сопряжений.


Сопряжения Таблица 1

Пример простых сопряжений Графическое построение сопряжений Краткое объяснение к построению
1. Сопряжение пересекающихся прямых с помощью дуги заданного радиуса R. Провести прямые, параллельные сторонам угла на расстоянии R. Из точки О взаимного пересе­чения этих прямых, опустив перпендикуляры на стороны угла, получим точки сопряжения 1 и 2. Радиусом R провести дугу.
2. Сопряжение дуги окружности и пря­мой с помощью дуги заданного радиуса R. На расстоянии R провести прямую, параллель­ную заданной прямой, а из центра О 1 радиусом R+R 1 - дугу окружности. Точка О - центр дуги сопряжения. Точку 2 получим на перпенди­куляре, проведенном из точки О на заданную прямую, а точку 1 - на прямой OO 1 .
3. Сопряжение дуг двух окружностей ра­диусов R 1 и R 2 прямой линией. Из точки О 1 провести окружность радиусом R 1 -R 2 . Отрезок O 1 O 2 разделить пополам и из точки О 3 провести дугу радиусом 0,5O 1 O 2 . Сое­динить точки О 1 и O 2 с точкой А. Из точки О 2 опустить перпендикуляр к прямой АО 2 , Точки 1.2 - точки сопряжения.

Продолжение таблицы 1

4. Сопряжение дуг двух окружностей ра­диусов R 1 и R 2 дугой заданного радиуса R (внешнее сопряжение). Из центров O 1 и О 2 провести дуги радиусов R+R 1 и R+R 2 . O 1 и О 2 с точкой О. Точки 1 и 2 являются точками сопряжения.
5. Сопряжение дуг двух окружностей ра­диусов R 1 и R 2 дугой заданного радиуса R (внутреннее сопряжение). Из центров O 1 и О 2 провести дуги радиусов R -R 1 и R -R 2 . Получаем точку О - центр дуги сопряжения. Соединить точки O 1 и О 2 с точкой О до пересечения с заданными окружно­стями. Точки 1 и 2 - точки сопряжения.
6. Сопряжение дуг двух окружностей ра­диусов R 1 и R 2 дугой заданного радиуса R (смешанное сопряжение). Из центров O 1 и О 2 провести дуги радиусов R - R 1 и R+R 2 . Получаем точку О - центр дуги сопряжения. Соединить точки O 1 и О 2 с точкой О до пересечения с заданными окружностями. Точки 1и 2 - точки сопряжения.

Лекальные кривые

Это кривые линии, у которых на каждом их элементе непрерывно изменяется кривизна. Лекальные кривые не могут быть вычерчены с помощью циркуля, их построение выполняется по ряду точек. При вычерчивании кривой полученный ряд точек соединяют по лекалу, поэтому ее называют лекальной кривой линией. Точность построения лекальной кривой повышается с увеличением числа промежуточных точек на участке кривой.

К лекальным кривым относятся так называемые плоские сечения конуса – эллипс , парабола , гипербола , которые получаются в результате сечения кругового конуса плоскостью. Такие кривые рассматривались при изучении курса «Начертательная геометрия». К лекальным кривым также относят эвольвенту , синусоиду, спираль Архимеда , циклоидальные кривые .

Эллипс - геометрическое место точек, сумма расстояний которых до двух неподвижных точек (фокусов) есть величина постоянная.

Наиболее широко применяется способ построения эллипса по заданным полуосям АВ и СD. При построении проводят две концентрические окружности, диаметры которых равны заданным осям эллипса. Для построения 12 точек эллипса окружности делят на 12 равных частей и полученные точки соединяют с центром.

На рис. 15 показано построение шести точек верхней половины эллипса; нижняя половина вычерчивается аналогично.

Эвольвента - является траекторией точки окружности, образованной ее развертыванием и выпрямлением (развертка окружности).

Построение эвольвенты по заданному диаметру окружности показано на рис. 16. Окружность делится на восемь равных частей. Из точек 1,2,3 проводят касательные к окружности, направленные в одну сторону. На последней касательной откладывают шаг эвольвенты, равный длине окружности

(2 pR), и полученный отрезок делят также на 8 равных частей. Откладывая на первой касательной одну часть, на второй – две части, на третьей – три части и т.д, получают точки эвольвенты.

Циклоидальные кривые - плоские кривые линии, описываемые точкой, принадлежащей окружности, катящейся без скольжения по прямой линии или окружности. Если при этом окружность катится по прямой линии, то точка описывает кривую, называемую циклоидной.

Построение циклоиды по заданному диаметру окружности d показано на рис.17.

Рис. 17

Окружность и отрезок длиной 2pR делят на 12 равных частей. Через центр окружности проводят прямую, параллельную отрезку. Из точек деления отрезка к прямой проводят перпендикуляры. В точках их пересечения с прямой получаем О 1 , О 2 , О 3 и т.д. - центры перекатываемой окружности.

Из этих центров описываем дуги радиусом R. Через точки деления окружности проводим прямые параллельные прямой, соединяющей центры окружностей. На пересечении прямой, проходящей через точку 1 с дугой, описанной из центра О1, находится одна из точек циклоиды; через точку 2 с другой из центра О2 - другая точка и т.д.

Если же окружность катится по другой окружности, находясь внутри нее (по вогнутой части), то точка описывает кривую называемую гипоциклоидой. Если окружность катится по другой окружности, находясь вне ее (по выпуклой части), то точка описывает кривую, называемую эпициклоидой.

Построение гипоциклоиды и эпициклоиды аналогично, только вместо отрезка длиной 2pR берется дуга направляющей окружности.

Построение эпициклоиды по заданному радиусу подвижной и неподвижной окружностей показано на рис.18. Угол α, который вычисляется по формуле

α = 180°(2r/R), и окружность радиуса R делят на восемь равных частей. Проводится дуга окружности радиуса R+r и из точек О 1 , О 2 , О 3 .. – окружности радиуса r.

Построение гипоциклоиды по заданным радиусам подвижной и неподвижной окружности показано на рис.19. Угол α, который подсчитывается, и окружность радиуса R делятся на восемь равных частей. Проводится дуга окружности радиусом R - r и из точек О 1 , О 2 , О 3 … - окружности радиусом r.

Парабола - это геометрическое место точек, равноудаленных от неподвижной точки - фокуса F и неподвижной прямой - директрисы, перпендикулярной к оси симметрии параболы. Построение параболы по заданному отрезку ОО =АВ и хорде СD показано на рис.20

Прямые ОЕ и ОС разделены на одинаковое число равных частей. Дальнейшее построение ясно из чертежа.

Гипербола - геометрическое место точек, разность расстояний которых от двух неподвижных точек (фокусов) - есть величина постоянная. Представляет собой две разомкнутые, симметрично расположенные ветви.

Постоянные точки гиперболы F 1 и F 2 - это фокусы, а расстояние между ними называется фокусным. Отрезки прямых, соединяющие точки кривой с фокусами, называются радиус-векторами. Гипербола имеет две взаимно перпендикулярные оси - действительную и мнимую. Прямые, проходящие через центр пересечения осей, называются асимптотами.

Построение гиперболы по заданному фокусному расстоянию F 1 F 2 и углу α между асимптотами показано на рис.21. Проводится ось, на которой откладывается фокусное расстояние, которое делится пополам точкой О. Через точку О проводится окружность радиуса 0,5F 1 F 2 до пересечения в точках C, D, E, K. Соединяя точки C с D и E c K, получают точки А и В – вершины гиперболы. От точки F 1 влево отмечают произвольные точки 1, 2, 3… расстояния между которыми должны увеличиваться по мере удаления от фокуса. Из фокусных точек F 1 и F 2 радиусами R=B4 и r=A4 проводятся дуги до взаимного пересечения. Точки пересечения 4 являются точками гиперболы. Остальные точки строятся аналогично.

Синусоида - плоская кривая, выражающая закон изменения синуса угла в зависимости от изменения величины угла.

Построение синусоиды по заданному диаметру окружности d показано

на рис. 22.

Для ее построения делят данную окружность на 12 равных частей; на такое же число равных частей делится отрезок, равный длине данной окружности (2pR). Проводя через точки деления горизонтальные и вертикальные прямые, находят в пересечении их точки синусоиды.

Спираль Архимеда - э то плоская кривая, описываемая точкой, которая равномерно вращается вокруг заданного центра и вместе с тем равномерно удаляется от него.

Построение спирали Архимеда заданному диаметру окружности D показано на рис.23.

Окружность и радиус окружности поделен на 12 равных частей. Дальнейшее построение видно из чертежа.

При выполнении построении сопряжений и лекальных кривых приходится прибегать к простейшим геометрическим построениям - таким как деление окружности или прямой на несколько равных частей, деление угла и отрезка пополам, построение перпендикуляров, биссектрис и т.д. Все эти построения изучались в дисциплине «Черчение» школьного курса, поэтому подробно в данном пособии не рассматриваются.

1.5 Методические указания по выполнению

При построении сопряжения двух дуг окружностей третьей дугой заданного радиуса можно рассмотреть три случая: когда сопрягающая дуга радиуса R касается заданных дуг радиусов R 1 и R 2 с внешней стороны (рисунок 36, а); когда она создает внутреннее касание (рисунок 36, б); когда сочетаются внутреннее и внешнее касания (рисунок 36, в).

Построение центра О сопрягающей дуги радиуса R при внешнем касании осуществляется в следующем порядке: из центра О 1 радиусом, равным R + R 1 , проводят вспомогательную дугу, а из центра O 2 проводят вспомогательную дугу радиусом R + R 2 . На пересечении дуг получают центр О сопрягаемой дуги радиуса R, а на пересечении радиусом R + R 1 и R + R 2 с дугами окружностей получают точки сопряжения А и А 1 .

Построение центра О при внутреннем касании отличается тем, что из центра О 1 R - R 1 а из центра О 2 радиусом R - R 2 . При сочетании внутреннего и внешнего касания из центра О 1 проводят вспомогательную окружность радиусом, равным R - R 1 , а из центра О 2 - радиусом, равным R + R 2 .

Рисунок 36 – Сопряжение окружностей дугой заданного радиуса

Сопряжение окружности и прямой линии дугой заданного радиуса

Здесь может быть рассмотрено два случая: внешнее сопряжение (рисунок 37, а ) и внутреннее (рисунок 37, б). В том и в другом случае при построении сопрягающей дуги радиуса R центр сопряжения О лежит на пересечении геометрических мест точек, равно удаленных от прямой и дуги радиуса R на величину R 1 .

При построении внешнего сопряжения параллельно заданной прямой на расстоянии R 1 в сторону окружности проводят вспомогательную прямую, а из центра О радиусом,равным R + R 1 , - вспомогательную окружность, и на их пересечении получают точку О 1 - центр сопрягающей окружности. Из этого центра радиусом R проводят сопрягающую дугу между точками А и А 1 , построение которых видно из чертежа.

Рисунок 37 - Сопряжение окружности и прямой линии второй дугой

Построение внутреннего сопряжения отличается тем, что из центра О проводят вспомогательную дугу радиусом, равным R - R 1 .

Овалы

Плавные выпуклые кривые, очерченные дугами окружностей разных радиусов, называют овалами. Овалы состоят из двух опорных окружностей с внутренними сопряжениями между ними.

Различают овалы трехцентровые и многоцентровые. При вычерчивании многих деталей, например кулачков, фланцев, крышек и других, контуры их очерчивают овалами. Рассмотрим пример построения овала по заданным осям. Пусть для четырехцентрового овала, очерченного двумя опорными дугами радиуса R и двумя сопрягающими дугами радиуса r , заданы большая ось АВ и малая ось CD. Величину радиусов R u r надо определить путем построений (рисунок 38). Соединим концы большой и малой оси отрезком AС, на котором отложим разность СЕ большой и малой полуосей овала. Проведем перпендикуляр к середине отрезка AF, который пересечет большую и малую оси овала в точках О 1 и О 2 . Эти точки будут центрами сопрягающихся дуг овала, а точка сопряжения будет лежать на самом перпендикуляре.



Рисунок 38 – Построение овала

Лекальные кривые

Лекальными называют плоские кривые, вычерченные с помощью лекал по предварительно построенным точкам. К лекальным кривым относят: эллипс параболу, гиперболу, циклоиду, синусоиду эвольвенту и др.

Эллипс представляет собой замкнутую плоскую кривую второго порядка. Она характеризуется тем, что сумма расстояний от любой ее точки до двух точек фокусов есть величина постоянная, равная большей оси эллипса. Построить эллипс можно несколькими способами. Например, можно построить эллипс по его большой АВ и малой CD осям (рисунок 39, а ). На осях эллипса как на диаметрах строят две окружности, которые можно разделить радиусами на несколько частей. Через точки деления большой окружности проводят прямые, параллельные малой оси эллипса, а через точки деления малой окружности - прямые, параллельные большой оси эллипса. Точки пересечения этих прямых и являются точками эллипса.

Можно привести пример построения эллипса по двум сопряженным диаметрам (рисунок 39,б) MN и KL. Сопряженными два диаметра называют, если каждый из них делит пополам хорды, параллельные другому диаметру. На сопряженных диаметрах строят параллелограмм. Один из диаметров MN делят на равные части; на такие же части делят и стороны параллелограмма, параллельные другому диаметру, нумеруя их, как показано на чертеже. Из концов второго сопряженного диаметра KL через точки деления проводят лучи. В пересечении одноименных лучей получают точки эллипса.



Рисунок 39 – Построение эллипса

Параболой называют незамкнутую кривую второго порядка, все точки которой равно удалены от одной точки - фокуса и от данной прямой - директрисы.

Рассмотрим пример построения параболы по ее вершине О и какой-либо точке В (рисунок 40, а). С этой целью строят прямоугольник ОABC и делят его стороны на равные части, из точек деления проводят лучи. В пересечении одноименных лучей получают точки параболы.

Можно привести пример построения параболы в виде кривой, касательной прямой с заданными на них точками А и В (рисунок 40, б). Стороны угла, образованного этими прямыми, делят на равные части и нумеруют точки деления. Одноименные точки соединяют прямыми. Параболу вычерчивают как огибающую этих прямых.

Рисунок 40 – Построение параболы

Гиперболой называют плоскую незамкнутую кривую второго порядка, состоящую из двух веток, концы которых удаляются в бесконечность, стремясь к своим асимптотам. Гипербола отличается тем, что каждая точка ее обладает особым свойством: разность ее расстояний от двух данных точек-фокусов есть величина постоянная, равная расстоянию между вершинами кривой. Если асимптоты гиперболы взаимно перпендикулярны, она называется равнобокой. Равнобокая гипербола широко применяется для построения различных диаграмм, когда задана своими координатами одна точка М (риссунок 40, в). В этом случае через заданную точку проводят линии АВ и KL параллельно координатным осям. Из полученных точек пересечения проводят линии, параллельные координатным осям. В их пересечении получают точки гиперболы.

Циклоидой называют кривую линию, представляющую собой траекторию точки А при перекатывании окружности (рисунок 41). Для построения циклоиды от исходного положения точки А откладывают отрезок АА], отмечают промежуточное положение точки А. Так, в пересечении прямой, проходящей через точку 1, с окружностью, описанной из центра О 1 , получают первую точку циклоиды. Соединяя плавной прямой построенные точки, получают циклоиду.

Рисунок 41 – Построение циклоиды

Синусоидой называют плоскую кривую, изображающую изменение синуса в зависимости от изменения его угла. Для построения синусоиды (рисунок 42) нужно разделить окружность на равные части и на такое же количество равных частей разделить отрезок прямой АВ = 2лR. Из одноименных точек деления провести взаимно перпендикулярные линии, в пересечении которых получают точки, принадлежащие синусоиде.

Рисунок 42 – Построение синусоиды

Эвольвентой называют плоскую кривую, являющуюся траекторией любой точки прямой линии, перекатываемой по окружности без скольжения. Построение эвольвенты выполняют в следующем порядке (рисунок 43): окружность делят на равные части; проводят касательные к окружности, направленные в одну сторону и проходящие через каждую точку деления; на касательной, проведенной через последнюю точку деления окружности, откладывают отрезок, равный длине окружности 2 лR, который делят на столько же равных частей. На первой касательной откладывают одно деление 2 лR/n , на второй - два и т. д.

Полученные точки соединяют плавной кривой и получают эвольвенту окружности.

Рисунок 43 – Построение эвольвенты

Вопросы для самопроверки

1 Как разделить отрезок на любое равное число частей?

2 Как поделить угол пополам?

3 Как разделить окружность на пять равных частей?

4 Как построить касательную из заданной точки к данной окружности?

5 Что называется сопряжением?

6 Как сопрячь две окружности дугой заданного радиуса с внешней стороны?

7 Что называется овалом?

8 Как строится эллипс?

В основном контур очертания деталей состоит из прямых линий и дуг окружностей, плавно переходящих от одной линии к другой, такой плавный переход называется сопряжениям . Точки сопряжения – точки плавного перехода одной линии к другой. Характерным признаком этих точек является совпадение касательных двух сопрягаемых линий (сопряжение первого рода).

Построение сопряжений основано на двух положениях геометрии.

Первое – для сопряжения прямой линии и дуги окружности необходимо, чтобы центр окружности, которой принадлежат дуги, лежал на восстановленном из точки сопряжения перпендикуляре к заданной прямой (рис. 2.6, а).

Второе – для сопряжения двух дуг необходимо, чтобы центры окружностей, которым принадлежат дуги, лежали на прямой, которая проходит через точку сопряжения и является перпендикуляром к общей касательной этих дуг (рис.2.6, б).

При вычерчивании сопряжений между двумя прямыми, прямой и окружностью, двумя окружностями при помощи некоторой дуги построение выполняется по следующему алгоритму: задав радиус дуги перехода, построением получаем центр дуги перехода и точку сопряжения.

Сопряжение двух прямых ,расположенных под прямым (рис. 2.7, а),

острым (рис. 2.7, б) и тупым (рис. 2.7, в) углами дугой окружности радиуса R выполняем следующим образом. Параллельно сторонам угла на расстоянии, равном радиусу дуги R, проводим две вспомогательные прямые линии и находим точку О пересечения этих прямых. Точка О является центром дуги радиуса R, сопрягающей стороны угла. Из центра О опускаем перпендикуляры к заданным прямым, N и N 1 ‑ основания перпендикуляров. Из центра О между точками сопряжений N и N 1 строим дугу,плавно переходящую в прямые ‑ стороны угла.

Сопряжение дуги окружности радиуса R с прямой линией АВ дугой радиуса r (или r 1 ). Строим дугу окружности радиуса R (рис. 2.8, а)и прямую АВ. Параллельно заданной прямой на расстоянии, равном радиусу r сопрягающей дуги, проводим прямую аb. Из центра О проводим дугу окружности радиусом, равным сумме радиусов R и r до пересечения ее с прямой аb в точке O 1 . Точка O 1 является центром дуги сопряжения.

Точку сопряжения с 2 находят на пересечении прямой OO 1 с дугой окружности радиуса R. Точка сопряжения с 3 служит основанием перпендикуляра, опущенного из центра О 1 на данную прямую АВ.

Сопряжение прямой, проходящей через точку О, с дугой окружности радиуса R (рис. 2.8, б). Дуга сопряжения имеет радиус r . Центр дуги сопряжения O 1 находим на пересечении вспомогательной прямой, проведенной параллельно данной прямой на расстоянии радиуса r, с дугой вспомогательной окружности, описанной из точки О радиусом, равным R+ r. Точка сопряжения с 1 является основанием перпендикуляра, опущенного из точки O 1 на данную прямую. Точку сопряжения с находим на пересечении прямой OO 1 с данной сопрягаемой дугой.



Сопряжение двух дуг окружностей дугой заданного радиуса может быть внешним, внутренним и смешанным.

При внешнем сопряжении центры О и O 1 сопрягаемых дуг радиусов R 1 и R 2 лежат вне сопрягающей дуги радиуса R (рис. 2.9, а).

При внутреннем сопряжении центры О и О 1 сопрягаемых дуг радиусов R 1 и R 2 лежат внутри сопрягающей дуги радиуса R (рис. 2.9, б).

При смешанном сопряжении центр О 1 одной из сопрягаемых дуг лежит внутри сопрягающей дуги радиуса R, а центр О другой сопрягаемой дуги – вне ее (рис. 2.9).

Внешнее сопряжение двух дуг окружностей дугой заданного радиуса .

l 1 и 1 2 (рис. 2.9, а) находим точки О и О 1 R 1 и R 2 . Из центра О проводим вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R 1 и сопрягающей R (R 1 + R ), а из центра О 1 R 2 и сопрягающей R (R 2 + R ).Вспомогательные дуги пересекутся в точке О 2 ,

Для нахождения точек сопряжения центры дуг соединяют прямыми линиями ОО 2 и О 1 О 2 . Эти две прямые пересекают сопрягаемые дуги в точках сопряжения S и S 1 . Из центра O 2 радиусом R проводят сопрягающую дугу, ограничивая ее точками со пряжения S и S 1 .

Внутреннее сопряжение двух дуг окружностей дугой заданного радиуса.

По заданным расстояниям между центрами l 1 и l 2 (рис. 2.9, б) находим центры О и О 1 , из которых проводим сопрягаемые дуги радиусов R 1 и R 2 . Из центра O 1 R и сопрягаемой R 1 (R R 1 ),а из центра О проводим вспомогательную дугу окружности радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R 2 (R ‑ R 2).Вспомогательные дуги пересекутся в точке О 2 , которая и будет искомым центром сопрягающей дуги.

Для нахождения точек сопряжения точку О 2 соединяем с точками O и O 1 прямыми линиями. Точки пересечения S и S 1 ‑ продолжения этих прямых с сопрягаемыми дугами являются искомыми точками сопряжения. Радиусом R из центра О 2 проводим сопрягающую дугу между точками сопряжения S и S 1 .

Смешанное сопряжение двух дуг окружностей дугой заданного радиуса .

По заданным расстояниям между центрами l 1 и 1 2 (рис. 2.10) находим центры О и О 1 , из которых проводим сопрягаемые дуги радиусов R 1 и R 2 . Из центра О проводим вспомогательную дугу радиусом, равным сумме радиусов сопрягаемой дуги R 1 и сопрягающей R (R 1 +R ), а из центра О 1 проводим вспомогательную дугу радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой дуги R 2 (R R 2 ). Вспомогательные дуги пересекутся в точке О 2 , которая будет искомым центром сопрягающей дуги.

Соединив точки О и О 2 прямой, получим точку сопряжения s 1 , соединив точки O 1 и O 2 , находим точку сопряжения S.

Из центра O 2 проводят дугу сопряжения от S до S 1 .

Построение касательной к двум окружностям . Из центра О 1 R′ равным разности радиусов R 1 ‑ R 2 (рис. 2.11) ‑ находим точку М′. Точку О 1 соединяемс точкой М′ , на продолжении линии прямой линии О 1 М′ строим точку М . Проводим параллельную линии О 1 М прямую из точки О 2 до пересечения с окружностью – находим точку N . Точки М и N – точки сопряжения.

Из центра О 1 проводим вспомогательную окружность радиусом R′ равным сумме радиусов R 1 +R 2 (рис. 2.12) ‑ находим точку М′. Точку О 1 соединяемс точкой М′ , на окружности радиуса R 1 находимточку М .

Проводим параллельную линии О 1 М прямую из точки О 2 до пересечения с окружностью радиусом R 2 и находим точку N . Точки М и N – точки сопряжения.

Сопряжение дуги и прямой дугой окружности заданного радиуса

Могут встретиться два случая такого сопряжения: внешнее касание сопрягающей дуги с заданной и внутреннее касание. В обоих случаях задача сводится к определению центра сопрягающей дуги и точек касания.

При внешнем касании (рисунок 52, а) из центра заданной дуги – точки O 1 проводят вспомогательную дугу радиусом R + R с . На расстоянии, равном радиусу R c сопрягающей дуги, параллельно заданной прямой проводят прямую. Точка О пересечения вспомогательной дуги и прямой есть центр сопрягающей дуги. На пересечении прямой, соединяющей точки О и O 1 с заданной дугой, отмечают точку касания A . Вторую точку касания В определяют как точку пересечения заданной прямой с перпендикуляром, опущенным на нее из точки О .

При внутреннем касании (рисунок 52, б) определение центра сопрягающей дуги и точек касания аналогичны предыдущему случаю с той лишь разницей, что радиус вспомогательной дуги равен R c R .

Рисунок 52

Различают три вида такого сопряжения:

1) внешнее сопряжение при внешнем касании сопрягающей дуги с двумя заданными;

2) внутреннее сопряжение при внутреннем касании сопрягающей дуги с двумя заданными;

3) смешанное сопряжение при внешнем касании сопрягающей дуги с одной заданной и внутреннем касании с другой.

При внешнем сопряжении (рисунок 53, а) центр сопрягающей дуги точка O располагается в точке пересечения вспомогательных дуг радиусами r + R c и R + R c , проведенных соответственно из центров сопрягаемых дуг – точек O 2 и O 1 . Точки касания A и B определяются как точки пересечения заданных дуг с прямыми OO 1 и OO 2 .

Внутреннее сопряжение дуг радиусами r и R дугой радиусом R c показано на рисунке 53, б. Для определения центра сопрягающей дуги – точки О проводят вспомогательные дуги радиусами R c r и R c R соответственно из центров заданных дуг – точек O 2 и O 1 . Точка О пересечения этих дуг и явится центром сопрягающей дуги. Из точки О через точки O 1 и O 2 проводят прямые до пересечения с заданными дугами и получают соответственно две точки касания – A и B .

Рисунок 53

При смешанном сопряжении центр сопрягающей дуги – точка О определяется как точка пересечения двух вспомогательных дуг радиусами R c +R и R с r (рисунок 53, в) или R с R и R с + r , проведенных соответственно из центров заданных дуг – точек O 1 и O 2 . Для определения точек касания сопрягающей дуги с заданными проводят две прямые: одну через точки О и O 1 , другую через точки О и O 2 . Точки пересечения каждой из них с заданными дугами дают искомые точки касания A и B .